Prof. Dr. Alfred Toth

Kategorie und ontischer Ort

1. Eine Besonderheit der klassischen Semiotik, die nie reflektiert, geschweige denn in Frage gestellt wurde, ist die Bijektion zwischen den Kategorien und ihren ontischen Orten

$$1 \rightarrow \omega_1$$

$$2 \rightarrow \omega_2$$

$$3 \rightarrow \omega_3$$
.

Das bedeutet also, daß man bisher stillschweigend von einer Struktur von Leerstellen der Form

$$S = (\Box, \Box, \Box)$$

und einer Menge von Kategorien

$$K = (1, 2, 3)$$

zusammen mit einer Abbildung

$$f: K \rightarrow S$$

ausgegangen war. Die Möglichkeit von topologischen Variationen von Zeichenrelationen wie z.B.

$$Z = (\Box, 1, 2, 3)$$

$$Z = (1, \Box, 2, 3)$$

$$Z = (1, 2, \square, 3)$$

$$Z = (1, 2, 3, \square)$$

gibt es daher in einer Semiotik, die auf der Koinzidenz von Kategorie und ontischem Ort basiert, nicht.

2. Gegeben sei die Relation der Primzeichen (vgl. Bense 1980)

$$P = (1, 2, 3)$$

und eine Menge von vier ontischen Orten

$$0=(\omega_1,\omega_2,\omega_3,\omega_4).$$

Damit ergibt sich für P zunächst ein Quadrupel topologischer Varianten

1

X	у	X	у
Z	Ø	Ø	Z

Dazu kommen noch vier weitere Gevierte aus den insgesamt 3! = 6 Permutationen:

Ø

X

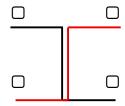
Das Leerstellen-Pattern der Zeichenrelation $Z=(P,\,0)$ hat also eine Kreuzform

X

Ø

und ist wegen des Überschusses von O gegenüber P offen und nicht mehr abgeschlossen wie das Dreiecksmodell, das der Peirce-Bense-Semiotik zugrunde liegt

Man kann das Kreuzmodell in zwei reflektierte PC/CP-Relationen auflösen:



so daß man die Primzahlenrelationen in der Form von possessiv-copossessiven Relationen (vgl. Toth 2025) schreiben kann:

$$(x/\emptyset), (z \setminus y)$$
 $(x/z), (\emptyset \setminus y)$

$$(y/\emptyset), (z \setminus x)$$
 $(y/z), (\emptyset \setminus z)$

$$(z/\emptyset), (y \setminus x)$$
 $(z/y), (\emptyset \setminus x)$

$$(x/\emptyset), (y \setminus z)$$
 $(x/y), (\emptyset \setminus z)$

$$(y/\emptyset), (x \setminus z)$$
 $(y/x), (\emptyset \setminus z)$

$$(z/\emptyset), (x \setminus y)$$
 $(z/x), (\emptyset \setminus y).$

Literatur

Bense, Max, Die Einführung der Primzeichen. In: Ars Semeiotica 3/3, 1980, S. 287-294

Toth, Alfred, Strukturtheorie possessiv-copossessiver Relationen. In: Electronic Journal for Mathematical Semiotics, 2025

28.10.2025